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Abstract— The property of single prediction predictive control
in the form of dynamic matrix control is studied within internal
model control framework. The sensitivity function and integral
squared error are used as performance evaluation criteria in
the frequency and time domain respectively, to quantitatively
analyze single prediction strategy, especially on controller with
the prediction and control horizon P = M = 1. We present the
correlation between system performance and model mismatch
in this case. The performance limitation for tracking unit step
signal is obtained through derivation and simulation.

Index Terms— Dynamic Matrix Control, Internal Model Con-
trol, Sensitivity Function, Single Prediction Strategy, Perfor-
mance Limitation

I. INTRODUCTION

Model Predictive Control(MPC) is widely applied in in-

dustrial process control system for its inherent stability and

excellent control performance. The main idea of MPC is

to repeatedly solve a optimization problem online for a

finite prediction horizon and then implement only the first

control move at a certain time. While for engineers MPC

is used to improve system performance and then profits,

three problems with respect to MPC come into being in

academia: the performance limitation(maximum achievable

performance), the relationship between system performance

and those design parameters and the advantages of MPC

over other conventional control techniques. The attempts to

solving these problems dated back to 1980s. Marchetti[1] and

Maurath[3] presented a series of guidelines to design param-

eters for single-input single-output(SISO) systems based on

simulation results. Marchetti also compared the performance

between predictive controllers and PID controllers. These

results are useful for controller design but contain few

quantitative analysis.

∗This work was supported by the National Nature Science Foundation of
China (61233004, 61221003, 613741096110409161304078), the National
Basic Research Program of China (973 Program-2013CB035500), and
partly sponsored by the International Cooperation Program of Shanghai
Science and Technology Commission (12230709600), the Higher Educa-
tion Research Fund for the Doctoral Program of China (20120073130006
& 20110073110018)and the China Postdoctoral Science Foundation
(2013M540364).

From the late 1980s, predictive control is also examined

in the framework of Internal Model Control(IMC)[4]. IMC

has its own properties which simplify the analysis on system

performance. Morari[5] presents three main factors on system

performance for SISO case: non-minimum phase(NMP) char-

acteristics, control move constraints and model uncertainty.

Sensitivity function and complementary sensitivity function

are used as performance evaluation criteria. It is proved that

“perfect control” is achieved for minimum phase system

when the controller is selected to be the inverse of the model.

DMC is one of techniques of MPC based on system step

response modelling and its IMC form is discussed in detail

by Xi[6] and Shu[7]. Therefore an analysis on performance

limitation of DMC can be done in such a framework.

The goal of this paper is to approach quantitative analysis

on performance of DMC based on IMC structure. For sim-

plicity, a special strategy called Single Prediction Predictive

Control(SPC) is studied. SPC is indicated by Marchetti[1]

and Yuan[2] to has similar response from standard(multi-

step prediction) strategies. The correlation between design

parameters and system performance is provided. The limi-

tation of the tracking error for a unit step signal is given

through derivation and simulation

II. PERFORMANCE EVALUATION CRITERIA

Conventional closed-loop control system can be trans-

formed into IMC structure equivalently if q = c/(1 + pmc),
as shown in Fig.1, where d is disturbance signal, y, ym plant

and model outputs, c, q controller and its IMC controller,

p, pm plant and model transfer functions. Generally, system

performance is evaluated both in frequency domain and time

domain. We will go through these two parts respectively.

A. Frequency domain criterion

For nominal performance, sensitivity function measures the

system’s ability of reference signal tracking and disturbances

restriction and is defined as

ε ≡ e

d− r
=

y

d
=

1− pmq

1 + q(p− pm)
(1)

978-1-4799-5825-2/14/$31.00 ©2014 IEEE

Proceeding of the 11th World Congress on Intelligent Control and Automation
Shenyang, China, June 29 - July 4 2014

1694

https://www.researchgate.net/publication/263940096_Predictive_Control_Based_on_Discrete_Convolution_Models?el=1_x_8&enrichId=rgreq-870e6019-08db-4a30-9569-c59f9f42302b&enrichSource=Y292ZXJQYWdlOzI2NzI3MTA3NTtBUzoxNTU2Mzc0MDkzOTA1OTJAMTQxNDExODI1ODE2Nw==
https://www.researchgate.net/publication/263940096_Predictive_Control_Based_on_Discrete_Convolution_Models?el=1_x_8&enrichId=rgreq-870e6019-08db-4a30-9569-c59f9f42302b&enrichSource=Y292ZXJQYWdlOzI2NzI3MTA3NTtBUzoxNTU2Mzc0MDkzOTA1OTJAMTQxNDExODI1ODE2Nw==
https://www.researchgate.net/publication/243765326_Internal_Model_Control_1_A_Unifying_Review_and_Some_New_Results?el=1_x_8&enrichId=rgreq-870e6019-08db-4a30-9569-c59f9f42302b&enrichSource=Y292ZXJQYWdlOzI2NzI3MTA3NTtBUzoxNTU2Mzc0MDkzOTA1OTJAMTQxNDExODI1ODE2Nw==
https://www.researchgate.net/publication/230873240_Robust_Process_Control?el=1_x_8&enrichId=rgreq-870e6019-08db-4a30-9569-c59f9f42302b&enrichSource=Y292ZXJQYWdlOzI2NzI3MTA3NTtBUzoxNTU2Mzc0MDkzOTA1OTJAMTQxNDExODI1ODE2Nw==
https://www.researchgate.net/publication/247230025_Predictive_Control_System_and_Its_Applications?el=1_x_8&enrichId=rgreq-870e6019-08db-4a30-9569-c59f9f42302b&enrichSource=Y292ZXJQYWdlOzI2NzI3MTA3NTtBUzoxNTU2Mzc0MDkzOTA1OTJAMTQxNDExODI1ODE2Nw==


Fig. 1. General and IMC Block Diagram of Feedback Control System

|ε| is expected to be as small as possible and the control

system achieves “perfect control” when |ε| = 0. Morari indi-

cates, however, that |ε| cannot equal to zero due to physical

restrictions and its value varies as signal frequency increases.

Therefore, it is reasonable to declare that a controller with

smaller |ε| has a better performance. We will examine this

by a simple example.

Consider two controllers for two plants: PI controller and

P controller with an identical controller gain and two plants

with G1(s) =
1

0.2s+1 and G2(s) =
1

0.2s2+s . We expect that

a PI controller is better than a P controller.

|εP | = | 1

1 + pmKp
| (2)

|εPI | = | 1

1 + pmKp +
Kp

Ti
pm

1
1−z−1

| (3)

|εP | > |εPI | (4)

The inequality (4) is satisfied in both(most) cases, as shown

in Fig.2

A more simple but explicit criterion based on the sensitiv-

ity function is system bandwidth ωB which is defined as

|ε(ω)| < 1/
√
2 ∀ω < ωB (5)

Intuitively, a better system performance is expected with

bigger system bandwidth.

For robustness, the complementary sensitivity function

relates the reference r to the output y and is defined as

η ≡ y

r
=

pc

1 + pc
= 1− ε (6)

According to the definition (6), η should be as close to unit

as possible. However, model uncertainty imposes an upper
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Fig. 2. Sensitivity Function with PI & P Controllers

bound on the magnitude of η [5]. As a result, η should be

considered where model uncertainty exists.

By now, the sensitivity and complementary sensitivity

function are two main factors in frequency domain when

evaluating system performance.

B. Time domain criterion

It is also desirable to examine system performance under

time domain. In this paper, H2-optimal control formulation is

adopted and the system performance is decided by the output

tracking error

||e||22 =

∞∑
k=0

e2k (7)

where e = y − r = ε × (d − r). Apart from sign, d and r
have the same effect on e. Thus we denote the external input

as v = d− r. According to Parseval Theorem, the error can

be rewritten as

||e||22 =
1

2π

∫ π

−π

|ε(eiθ)v(eiθ))|2dθ (8)

Note that there is no item of control move constraint in this

criterion.

III. PERFORMANCE EVALUATION FOR DMC BASED ON

SINGLE PREDICTION STRATEGY

DMC in IMC structure is shown in Fig.3. In general, all

design parameters have effects on system performance and

stability including prediction horizon P , control horizon M ,

weighting items Q and R. In this paper, only one control

move(M = 1) at time k is calculated with one predictive

output at a single time point k + P . The obtained control

move is supposed to be invariant within the following P time

intervals. Such strategy is called single prediction predictive

control(SPC). In the following, we first give fundamental
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Fig. 3. DMC Block Diagram in IMC structure

descriptions for the model and controller. Then the frequency

domain properties, ε and η are studied when model uncer-

tainty exists. Finally the time domain property is derived.

Illustrative examples support our results.

A. Model and control descriptions

For SPC, the model output is

ym(k + P ) =
N∑
i=1

ĝiu(k + P − i) (9)

=

N∑
i=1

âi�u(k + P − i) (10)

where gi, ai, i = 1, 2, · · · , N are model impulse and step

response respectively and

ĝ(z−1) =
N∑
i=1

ĝiz
−i+1 (11)

â(z−1) =

N∑
i=1

âiz
−i+1 (12)

The transfer function of the plant and model will be

G(z−1) = z−1g(z−1) (13)

Ĝ(z−1) = z−1ĝ(z−1) (14)

where g =
∑N

i=1 giz
−i+1 is plant impulse response. The

predictive output and the corresponding function to minimize

is

yp(k + P ) = ym(k + P ) + h[y(k)− ym(k)] (15)

Jp = q[yp(k + P )− r(k + P )]2

+λ�u2(k) (16)

Function (16) can be rewritten as following if u(k) = u(k+
1) = · · · = u(k + P )

Jp = q{Ĝp[u(k − 1) +�u(k)]

+
N−P∑
i=1

ĝP+iu(k − i) + he(k)− r(k + P )}2

+λ�u2(k) (17)

where

Ĝp =
P∑
i=1

ĝi = âp (18)

Let ∂Jp/∂�u(k) = 0 with �u(k) = u(k) − u(k − 1), we

obtain the optimal control law

u(k) =
1

F (z−1)
[r(k + P )− e(k)] (19)

F (z−1) = Gp +
N−P∑
i=1

ĝP+iz
−i

+(1− z−1)
λ

qGp
(20)

The controller is

Gc(z
−1) =

1

F (z−1)
(21)

With (13)(14)(21), we are able to investigate the properties

of SPC within IMC framework. In general, a filter Gf is

set in feedback loop to tune system’s output, stability and

robustness. We simply set it to unit here to emphasize the

effect of the controller Gc. Our results are given by several

theorems.

Theorem 1: The system output is zero-offset for tracking

step reference signal.

Proof: Suppose the reference input is v = k
1−z−1 , where

k is an arbitrary step gain. For steady state conditions we have

F (1) = ĝ(1) (22)

ε(1) =
1− ĝ(1)F−1(1)

1 + F−1(1)(g(1)− ĝ(1))
= 0 (23)

e(∞) = lim
z→1

(1− z−1)(ε ∗ v) = 0 (24)

Theorem 1 proves the zero-offset property of SPC even with

model mismatch and control move weighting. Notice that

equation (24) is not satisfied for all references. The controller

here is designed using step response model and the input v
has no zeros only when dealing with step reference. SPC

cannot track ramp signal without offset.

B. One-time-interval prediction(P = 1)

In this case, we predict the output at time k+1. The control

law and the controller transfer function is

�u∗(k) = u(k)− z−1u(k) (25)

=
1

â(z−1) + λ
qâ1

[r(k + 1)− e(k)] (26)

Gc(z
−1) =

1

1− z−1
· 1

â(z−1) + λ
qâ1

(27)

=
1

ĝ(z−1) + (1− z−1) λ
qâ1

(28)
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Theorem 2: If λ = 0, one-time-interval prediction con-

troller is the inverse of model transfer function with one time

interval delay. System performance is decided by the degree

of model mismatch.

Proof: When λ = 0, (28) becomes

Gc(z
−1) =

1

ĝ(z−1)
= z−1Ĝ−1(z−1) (29)

εDMC =
(1− z−1)ĝ

ĝ + z−1(g − ĝ)
(30)

Since g and ĝ remain unchanged once the plant and model are

selected, the sensitivity function ε is uniquely decided by their

difference g − ĝ. Suppose there exists only gain mismatch

g = μĝ, where μ is the parameter of model mismatch. We

have

εDMC =
1− z−1

1 + (μ− 1)z−1
μ > 0 (31)

There are three different cases.

1) μ < 1: The magnitude of sensitivity function increases

when μ becomes smaller but the system remains stable.

2) μ > 1: The magnitude of sensitivity function increases

when μ becomes bigger. Mathematically, ε → 0 when

μ → ∞. However, Xi[6] gives a upper bound of μ to

ensure the stability of the system.

3) μ = 1: The model matches the plant perfectly. The

sensitivity function εDMC = 1 − z−1. Note that the

sensitivity function has nothing to do with the form of

plant and model.

It should be noted that one-time-interval prediction strategy

cannot be implemented into NMP plants, i.e. NMP zeros and

time delay. The reason is that the controller will be unstable

if the plant has NMP zeros and for time delay system, a1 = 0
makes controller Gc no sense.

Xi[6] demonstrates that for Gf = 1, 0 < μ < 2 is

sufficient to ensure the closed-loop stability. Thus when

μ → 2 the sensitivity function ε reaches its limit.

|ε| → |1− z−1

1 + z−1
| < |1− z−1| = |ε|μ=1 (32)

It is interesting to note that the sensitivity function when

there is model mismatch is smaller than it when no model

uncertainty exists, as shown in Fig.4. However, a further

study on complementary sensitivity function has presented

a more objective result on this problem. The sensitivity

function ε cannot be the only criterion of performance

estimation when model uncertainty exits. The complementary

sensitivity function has to be added in this case. Fig.5 shows

the complementary sensitivity function for above three cases.

Poor robustness appears when μ > 1. Now we can conclude

that there is a tradeoff between system performance and

robustness. Model mismatch, if exists, deteriorates system

performance. Moreover, a too “weak” model gain may lead

to instability.
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So far, SPC properties under frequency domain is studied.

Next we move to time domain properties, mainly about

calculating the tracking error ||e||22.

Theorem 3: If λ = 0 and g = ĝ(μ = 1), ||e||22 = 1
Proof: Substitute (31) into (8) with unit step input v =

z
z−1 , then

||e||22 =
1

2π

∫ π

−π

| eiθ

eiθ + (μ− 1)
|2dθ (33)

=
1

2π

∫ π

−π

|e
iθ

eiθ
|2dθ = 1 (34)

1697



0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

μ

||e
||2 2

Fig. 6. Integral Squared Error ||e||22 with μ ∈ (0, 2)

A general relationship between μ and ||e||22 is shown in

Fig.6. It is seen that model gain mismatch from -50% to

50% cause small errors and the error increase dramatically

when the gain mismatch is greater than 50%. Immediately,

we obtain the minimum tracking error for one-time-interval

prediction strategy. This limitation is identical to the case

where a basic sampled-data controller is used. It means SPC

is able to track the reference signal within one step.

As we have indicated above, the tracking error is also

affected by the inputs, namely the type of reference signal.

The following table lists the minimum tracking error for 3

types of input.

TABLE I

MINIMUM TRACKING ERROR FOR DIFFERENT INPUTS

input v error||e||22
z−l 2
k

1−z−1 k2

z−1

(1−z−1)2
Inf

In this section, some quantitative results are obtained for

one-time-interval prediction case. Limitation of tracking unit

step signal is calculated. However, given that a1 is pretty

close to zero, the controller Gc, even for minimum phase

plants, is seldom applied in real systems.

C. Multi-time-interval prediction(P > 1)

According to (20), the controller Gc has a item âp instead

of â1. As a result, this strategy is applicable in most cases.

Now we examine the sensitivity function for the ideal case

where g = ĝ and λ = 0.

ε = 1− z−1ĝ

âp +
∑N−P

i=1 ĝP+iz−i
(35)

=
âp + (1− z−P )

∑N−P
i=1 ĝP+iz

−i

âp +
∑N−P

i=1 ĝP+iz−i
(36)

It is difficult to obtain an explicit formula that reflects the

relationship between time interval P and system sensitivity

function ε. A result is given for an extreme case where P =
N .

Gc = â−1
N (37)

The controller has become a P controller here. Hence, a

strategy of N -time-interval prediction is suitable only for

systems with good open-loop properties. Luo[10] presents

robust analysis on this problem and demonstrates that N -

time-interval prediction has the best robustness property

among other time-interval strategies. When the prediction

length P is between 1 and N , there is a trade-off between

system robustness and performance. Fig.7 shows a system

bandwidth test result for a system with monotonous step

response, such as G(s) = 1
0.5s+1 . System bandwidth also

expresses a monotonous property with prediction horizon. It

is interesting to notice that ωB approximately has the shape of
1
x with respect to P . ωB is sensitive to horizon changes when

P is small. Despite the intuitive and simulative results given

above, theoretical demonstrations is still needed to explain

the relationship between system performance and prediction

horizon.
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IV. CASE STUDY

In this section, the results obtained are tested by simulating

a typical industrial process, which is used by Xi[6]. The
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system has the form of

G(s) =
e−τs

1 + s
(38)

where τ = lT . l = 5 is system time delay constant and

T the sampling time period. The model transfer function is

expressed as

G(z) = z−(l+1) 1− σ

1− σz−1
(39)

where σ = e−T , and a SPC controller with prediction horizon

P is given as (20) and (21).
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Fig. 8. The Sensitivity Function with P = 1, 6 and N

As shown in Fig.8, controller with prediction horizon less

than system delay constant is unable to achieve desirable

performance and system performance deteriorates as P in-

creases. On the other hand, obvious spines are observed

when P is small which means poor robustness. This is also

supported by an investigation on complementary sensitivity

function. The basic trade-off between nominal performance

and robustness for selecting prediction horizon P is well

illustrated in this case.

The integral squared error is computed and listed in

TABLE II. As expected, the minimum ISE is achieved

when P = 6, which represents an identical case where

P = 1 for system without time delay. Theoretically, the

value of minimum ISE is obtained as following. For time

delay systems, the minimum tracking error is l[5]. This error

together with the minimum ISE for SPC(see Theorem 3) form

the final minimum ISE for this SPC controlled time delay

system. Not surprisingly, the theoretical result coincides with

the computed one(ISE = 6).

TABLE II

MINIMUM TRACKING ERROR FOR DIFFERENT PREDICTION HORIZON

Prediction Horizon P error||e||22
6 6

8 6.154

10 6.170

V. CONCLUSION

The performance evaluation and its limitation for MPC

have been matter of investigations for many years. While

general results are quite difficult to obtain, a quantitative

analysis on a special SPC strategy based on DMC is pre-

sented. The main idea is to use sensitivity function as a

performance evaluation criterion to check the relationship

between prediction horizon and system performance. For

system with monotonous step response, prediction horizon

is of inverse dependent to system bandwidth. The result is

tested by a first order inertial system.

A special case of one-time-interval-prediction is studied in

detail. The zero-offset property is demonstrated for tracking

step reference signal in the presence of control variable soft

constraint and model mismatch. We find that system per-

formance is related but showing nonlinearities to the degree

of model mismatch. A performance limitation is obtained in

this case. The minimum tracking error to unit step signal is

a constant 1, which coincide with the minimum error for a

sampled-data control system.

These results have been tested by a typical industrial pro-

cess with time delay. Results from theoretical derivations and

MATLAB simulations is identical. It proves the correctness

of our work. The methodology could be used for analysis

on NMP and multi-input multi-output systems, where it is

interesting to investigate how MPC affects system NMP zeros

and their interactions with inputs.
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